Coherence metrics
coherence.Rd
Coherence metrics
Arguments
- x
Output of Compare_2D_3D function.
- w
Integer indicating square window dimensions.
- metric
Cohension metric to use. It must be one of
"sa"
,"sku"
and"rao"
- normalize
If
TRUE
, then sum of solutions is normalized at a \([0,1]\) scale.- plot
If
TRUE
, then coherence maps are ploted.- addlines
If
TRUE
, then border lines frommaps::map
are ploted.- ...
Further arguments passed in function, based on metric choice. See more in Details.
Details
"sa"
and "sku"
are derived from geodiv::focal_metrics
and
in ellipsis (...
) further arguments of
geodiv::focal_metrics
are passed.
metric = "rao"
is derived from rasterdiv::paRao
and in ellipsis
(...
) further arguments of rasterdiv::paRao
are passed.
References
Rocchini, Duccio, Matteo Marcantonio, Daniele Da Re, Giovanni Bacaro, Enrico Feoli, Giles Foody, Reinhard Furrer, et al. 2021. "From zero to infinity: Minimum to maximum diversity of the planet by spatio-parametric Rao’s quadratic entropy." Global Ecology and Biogeography 30 (5): 2315. doi:10.1111/geb.13270 .
Rocchini, Duccio, Elisa Thouverai, Matteo Marcantonio, Martina Iannacito, Daniele Da Re, Michele Torresani, Giovanni Bacaro, et al. 2021. "rasterdiv - An Information Theory tailored R package for measuring ecosystem heterogeneity from space: To the origin and back." Methods in Ecology and Evolution 12 (6): 2195. doi:10.1111/2041-210X.13583 .
Smith, Annie C., Phoebe Zarnetske, Kyla Dahlin, Adam Wilson, and Andrew Latimer. 2023. Geodiv: Methods for Calculating Gradient Surface Metrics. https://CRAN.R-project.org/package=geodiv.
Becker OScbRA, Minka ARWRvbRBEbTP, Deckmyn. A (2023). maps: Draw Geographical Maps. R package version 3.4.2, https://CRAN.R-project.org/package=maps
Examples
if (FALSE) { # \dontrun{
## This example requires commercial solver from 'gurobi' package for
## portfolio = "gap". Else replace it with e.g. portfolio = "shuffle" for using
## a free solver like the one from 'highs' package.
biodiv_raster <- get_biodiv_raster()
depth_raster <- get_depth_raster()
data(biodiv_df)
out_2D_3D <- Compare_2D_3D(biodiv_raster = biodiv_raster,
depth_raster = depth_raster,
breaks = c(0, -40, -200, -2000, -Inf),
biodiv_df = biodiv_df,
budget_percents = seq(0, 1, 0.1),
budget_weights = "richness",
threads = parallel::detectCores(),
portfolio = "gap",
portfolio_opts = list(number_solutions = 10))
coherence(out_2D_3D, w = 3, metric = "sa")
coherence(out_2D_3D, w = 3, metric = "sku")
coherence(out_2D_3D, w = 3, metric = "rao")
} # }